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ABSTRACT

Codes have been discussed recently in connection with signal
compression and noise reduction in communication theory, and they are
here defined as transformations between two time series of discrete
symbols. The electronic apparatus which performs the transformation, or
any part of the apparatus, can be described by a linear graph which re-
presents transitions between different memory-states. It will be shown
how these graphs cn be used to systematically classify codes, combine
different blocks of apparatus, examine synchronism of decoding apparatus,
qtc. Linear graphs have been studied as mathematical systems in connec-
tion with topology, Markov chains, and electrical network theory; hence
there is already Mich theory which might be profitably applied to com-
munication problems.
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App liation of Linear Graphs to Gommunic, ation Problems

Stte diarams

It is the purpose of this paper to present a method of easily
visualizing certain features of the operation of finite-state transducers.
A finite-state transducer is a piece of apparatus with one or more inputs
and one or more outputs, all bearing digital signaJ.s with symbols chosen
from a finite alphabet. Such symbols, for example, might be the binary digits
0 and 1, or the letters of the common alphabet. The symbols in these signals

4 occur in time sequence, but not necessarily periodically. Suppose now that a
transducer has one input and one output, and that the input symbols are fed
in periodically. Every time an input symbol is fed into the transducer either
of three things may be observed at the output: 1) nothing comes out, 2) a
single symbol comes out, or 3) a finite group of symbols comes out rapidly
but in a certain sequence. When an output symbol, or group of symbols, does
come out it is a, function not only of the present input symbols, but also of
previous input symbols. The device might be said to have a certain memory
of previous symbols. It can only remember a finite number of things about
the previous symbols, but this is not to say that there is any fixed distance
into the past from beyond which there is no influence. Memory of a only finite
number of things about past symbols is implied by the fact that the apparatus
is to be physically realizable, is of finite extent and accuracy, and therefore
is capable of assuming only a finite number of recognizable memory States. As
an example, consider a device which has three flip-flops and a magnetic drum
storage with 100 magnetizable elements. A particular memory state might qor-
respond to two flip-flops *off"I, the other *on"', and a certain pattern of 20
elements magnetized on the drum. The total number of memory states in this
example is 23, 2100 1031. Since in many cases the number of stateswil1 be
correspondingly large, it is evident that the diagram to be described below
cannot then be drawn in full; but usually a simpler case of the same type
will suffice, or else pertain features of the full diagram can be discussed
without actually drawing it in full. The class of finite-state transducers
was introduced by C.E. Shannon(l) in connection witA coding operations.

The operation of finite-state transducers can be easily visulized
by using a linear graph diagram. Fig. 1 shows how the linear graph re-
presentation compares with three others for a specific type of code: 1)
the upper right shows the code table, 2) the lower table shows how a par-
ticular sequence is transformed, and 3) the heavy lines in the diagram
show a "tree"t which represents the successive binary decisions necessary
to decide what the input combination is, and then what the corresponding
output is. As each input combination is completed the next must be begun,
therefore all of the terminal branches are returned to the base state, A.

().E Shannon, "A Mathematical Theory of Communication*., Bell System
Tech. Journ., Vol 27, pp 379-423, July 1948 - see Section 8
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The meanings of the two states in this example arer state A is the state
the apparatus is in if an input combination has just been completed and
the next is about to begin, state B is the state of knowing that the input
combination has started with 0 and waiting to see if the whole combination
is 00 or 01. The bottom table in Fig. 1 shows one input sequence but two
output sequences, these represent the outputs which occur respectively when
the apparatus is started in state A and in state B. Thus, one transducer
with Vestates really can effect er possible transformations of a semi-infinite
sequence, and the linear graph represents all of these at once. A linear
graph with labels such as in Fig. 1 will be called a state diagram if it ful-
fills the following conditions: 1) has n arrows leaving each node (state),
each labeled with one of the n symbols in the alphabet, and each terminating
in the same or another state, and 2) has another label, in parenthesis, re-
presenting the output symbols, if such occur during that particular change of
state. Several operations on such state diagrams will now be defined, after
which some applications to practical'problems will be given.

Addition

In Fig 2. two different transducers are shown connected so that
they have a common input. If one transducer can have 6-1 states and the
other 0-2 states, then when combined they can have6dli- 2 states. The sum of
two state diagrams, each representing a transducer, will,.be defined as another
state diagram which represents the two transducers with a common input. If
the states of the first transducer are A and B and of the second . and 0, then
the states of the combined transducers can be represented as, A.4, Ap, B-4 and
Bp. The transition arrows for the sum diagram are obtained by noting the
transitions which take place in the devices individually. For example, sup-
pose the first device is in state A, *the second device is in state P, and
a symbol 0 is fed in. Then the first device will shift to state B, the second
device will remain in state P, therefore the combined devices will s1ift
from state Aý to Br. By repeating this process the sum diagram can be com-
pleted as that n(2 in this case) arrows leave each state. The outputs have
been omitted, if they are desired then two outputs must be shown in the sum
graph, and this might be done by writing one above the other in parentheses
on the proper arrow. (See section "Networks of Transducers"' below.) The
operation of addition defined here, or that of multiplicatt?3 defined below,
do not agree with the existing operations on linear graph%'J

Reduction

In Fig 3 is shown a state diagram with two dashed lines thru it,
These dashed lines have the following property: if a state on one side of
the line is occupied an input symbql will either cause a crossing of the line
or a staying on the same side of the line, independently of just which state
on that side is initially occupied. A state diagram which describes only the

(2) -

D. Kdnig, mTheorie der endlichen und unendlichen Graphen t Chelsea Pub. Co.,
New York 1950
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crossing of such a line, or more generally between any sets of subsets of the
original states, will be defined as a reduction of the whole state diagram.
Thus in Fig. 3 the diagram with A and B . C represents the crossings of the
horizontal line. Note that when AP was written in a state it corresponded to
A and f, here B * C means B or Q.

S~Factorization

A state diagram can sometimes be reduced in several ways; if it can
be reduced in enough ways so that the totality of the reduced states gives
enough information to determine the original state, than it can be factored
as shown in Fig. 3. Factorization is almost the inverse operation to ad-
dition, except that if the factors are readded (according to the first de-
finition of addition) more states might appear which were not present in the
original. For example, the factors in Fig 3 are the same as the addends in
Fig. 2, but the state BU in Fig. 2 is not represented in Fig° 3. However,
the state B-c is quitted as the first input is received, and hence it does not
affect the steady-state operation of the device.

Multiplication

The multiplication of two state diagram is defined to correspond to
the connection of two transducers in tandem. Agan the number of states in
the product is the product of the numbers of states in the original diagrams.
The output of the first transducer becomes the input to the second. Thuas in
Fig 4, 1011 into the first transducer becomes 0111, this is fed to the second
transducer and comes out 0101111 (for a starting state A-k). Note that the same
resvIt is obtained in one step by using the product diagram. The product dia-
gram is built up as follows.- take a pair of states, say B., and an input
symbol, say 0. The first transducer changes to state A and sends a 01 to the
second; the second then stays in state .4 emitting 0, and then changes to state
• emitting 10. The combination in tandem thus goes from state B-4 to state Af
with the emission of 010, and an arrow is so drawn in the product state dia-
grm. Repetition of this process 7 more times completes the product graph.

Identities

An "identity* will be defined here to mean a state diagram which,
if it is started in the correct state, will transform any semi-infinite (input)
sequence, after a possible delay into the same (output) sequence. In Fig 5
the upper diagram represents a transducer which always immediately emits the
same symbol which is fed in. The middle diagram represents a transducer which
always emits an output symbol the same as the immediately preceding input
symbol. By continuing this series the state diagram for any delay line can

* be obtainedj for a delay of 6 symbols 2.8 states are required. Another type
of identity is shown in the lower diagram of Fig. 5, here if a start is made
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in the left hand state a 1 will come out as a 1 immediately, a 01 will come
out, as a 01 but all at the time of the second digit, and a 000 will come out
as 000 all at the time of the third digit. Thus any sequence is transformed
into itself, but the delay is not a fixed amount.

Inverse

An inverse of a state diagram will be defined as any other state
diagram which can be multiplied by the first to yield an identity. Since
there is more than one identity the inverse is not unique, in fact another
inverse can always be found by multiplying a particular inverse by an identity.
The inverse diagram of T corresponds to a transducer which performs a deCOlg
opertion which restores the original signal after an encoding corresponding
to T. Such a situation is shown in Fig. 6; the inverse in this examples
happens to be the same as the original state diagram. If the encoder is start-
ed in state A and the decoder in state .4, the combination is started in state
A.( and it will be seen that any semi-infinite sequence will be transformed in-
to itself with no error. If however a start is made in any other combination
of states the first few digits will be wrong, but eventually no more errors
•will be made. Thus, starting in state At and with an input sequence 00101100...,
'the output sequence will be 0ll0lOO0....

Networks of transducers

The operations of addition and multiplication can be used tod.rive
a single state diagram for a network of transducers0 In Fig0 7 A and B are
the state diagrams for a flip-flop and one symbol delay, and A + B is the
diagram of these two units fed by a common input. A coincidence circuit is
represented by the diagram C, which has only a single state. Note that A + B
has one input and two outputs, while C has two inputs and one output0 The
combination (A * B) x C then represents the interconnection of all three
unitt as shown0

If the network to be analyzed involves feedback the above method
can still be applied with a slight modification. Fig 8 shows a network with
a coincidence circuit which has one input fed by an external source and the
other fed by the output delayed one symbol. The first step is to find the
state diagram of the same network with the feedback loop opened0 As can
be seen, this network has two inputs and two outputs0 By an operation which
might be called contraction, only those arrows and labels in which the lower
input and lower output agree are retained, the labels then being the corres-
ponding upper parts. This will always be possible since there are arrows
leaving every state labeled with every input combination. The physical
significance of this operation is that the second input to the coincidence
unit is the output of the delay unit, hence only combinations in which these
are the same are possible, and when they are the saxe they need not be shown

Since multiplication is not commutative, the right and left inverses will

in general differ. The right inverse will be meant below unless otherwise
specified.
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since the desired diagram describes only the external behavior of the ne'worko

§Snchronization

Any transducer which has a memory of previous input symbols must
be started in the correct state to accomplish a given transformation of the
signal. In Fig. 1 the transducer codes according to the table only if it
is started in state A? but if it is started in state B insteadthe lower
table shows that the desired code is eventually reached, at least for the
input sequence shown. This situation might be described by saying that the
transducer starts out of sync but later gets intQ sync by itself. Testing
a transducer by starting it in a wrong state and feeding in different se-
quence 'to see if it corrects itself would be a tedious process, but by simply
adding the diagram to itself (according to the above definition of addition)
shows at a glance from which states sync may eventually be regained and which
input sequence will accomplish this. A diagram added to itself represents
two similar devices fed by the same signal, and also represents the transi-
tions of state-pairs describing the actual transducer which may be out of sync,
and an ideal transducer which is in sync. For example state Ap might mean
mean that the actual device is in state A but it should be in state B, and
A-4 would then mean in state A when it should be in state A, i.eo in sync.
The state diagram shown in Fig 1 is shown added to itself in Fig. 9. It
can now be seen at a glance that out of sync operation will be maintained
only if a long sequence of Os is fed in. The first 1 returns the device
to the A4.- Bp part of the linear graph, and this is identical with the
original state diagram. A device of this type is self resetting.

An example of a non-self resetting device is also shown in Fig. 9.
In this case when the diagram is added to itself a linear graph with two
separate parts is formed. There is no path from state Ap to state A-4, there-
fore if the device is set in state A when it should be in state B the error
will never be corrected in normal operation. In this case the diagrams are
not needed to see that sync will not be restored since it is obvious that
O 1 0 1 0 ... might be interpreted either as 01 01 0.00 or as 0 10 10...,
and since all messages are the same length the mistaken decomposition will
be perpetuated. In more complicated cases the property of being self re-
setting may not be as easy to see. The general procedure is to add the state
diagram to itself and see if there are any separate parts, i.e. sets of states
from which the desired states cannot be reached, and if there are no separate
parts the device is self resetting. Several types of out of sync state are
shown in Fig. 10.

If a device is in a correct state and if the signal to it is with-
error then it will remain in the correct state. However, a device started
correctly can later be in the wrong state by two causes.- internal mal-
functioning and thru an error in the input sequence. The latter cause can
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be examined by a slight variation in the addition process. In Fig 11 a
device is shown being fed by two signals, the seeond seignal being the
first as distorted by a noisy channel. The state diagram is first modified
by discarding all labels, since the labels are meaningless if the signal
digits are possibly in error. Then the resulting diagram is added to it-
self just as before but imagining that there is only one symbol, Ie. "bhange
state"0 In the example, any state of the sum diagram can be reached from any
other, hence all combinations of out of sync conditions can be caused by
channel error. That this is not always possible can be seen by considering
the non-self resetting diagram of Fig. 9; no channel error can affect the
sync of a device when all signals are the same length.

Another way to examine the sync properties of a encoder-decoder
combination is to multiply their diagrams according to the rule given above.
If the product diagram has a set of states from which the identity part of
"the diagram cannot be reached, than the decoder will not eventually return
to synchronism with the encoder once an error is made. Fig 6 shows again
that the transducer added to itself above is self resetting. It will be shown
below how a main channel sequence can be found which will definitely reset
the decoder in such cases.

ýAlication to Picture Code

An application of the above methods for examining synchronization
can be made to a code which has been used in compressing certain types of
facsimile picture 3-) The code which is to be analyzed is the two component
code shown at the bottom of Fig 12. The pictures under consideration are
mostly white (0) but where black (1) does occur several black elements can
be expected close together. The encoder uses the left component (W) to send
white areas and the right component (B) to send black areas. In other words,
the system uses two different code tables depending on whether it is sending
a white or a black area. When two code tables are used there must be some
rule to determine where the transition between them occurs, otherwise the
receiver will not know which code table to use. The rule in this case is to
always alternate between the two code tables unless the last message in eith-
er is encountered (000.. 00 or 111)9 in which case the next signal will be
chosen from the same code table. The action of the decoding apparatus is
to be examined here, and a state diagram representing it is shown at the
left in Fig. 12. Since ihe signals are either 2 or 4 digits long, a
simplified diagram can be drawn as shown at the right in Fig, 12 and that
the inputs are the 4 combinations of 2 binary digits. The states W and B
are, respectively, the base states when the next sign4a is to be from the
W or B code tables. A single pair of binary digits defines the signal
in the B table, but 2 pairs are necessary in the W table. As ftr as
sync is concerned, the states marked H', H9' and H190 are similar in that
a change is made to the B code table, hence these 3 states can be combined

(A°E. LaemmelO "Coding processes for bandwidth reduction in picture
transmissionO, Report R-246-51, Microwave Research Institute, Polytechnic
Institute of Brooklyn, August 30, 1951.
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into one state (H) as in Fig 13. This is really the operation of reduction4 as defined above. More amplifications are made in -that x is used to repre!
sent 01, 10 or 119 and if two arrows go between -the same two state they are
combined,

The simplified state diagram is now added to itself ("multiplied
by 2W), and at the same time another reduction is made by combining pairs
of states such as HI and IHo The resulting state diagram, shown on the
right in Fig 13, has a set of desired statep WW, BB etc. the same as the

"decoder itself, and also the out of sync states HI, BW etc0  Notice first
that the desired states can be reached from every out of sync state, but
that there are many special sequences which will perpetuate the out of sync
condition as long as they are -ontinuedo As an example of the latter, start
in RW and consider the decoder receivers a string of 001o, or start in BfWi
and consider a string of x~s, say 01011011 The probability of re-
maining out of sync will usually decrease with increasing time because most
sources will not generate the special sequences necessary to maintain the
out of sync condition indefinitely.

It is naturally of interest then to ask if there is not some special
sequence which will certainly return the decoding apparatus to sync. If it
is known what the state of the decorder is this is easily done, for example
if the decoder is in state B whenit should be in state W, then 11 11 00
would restore it to state B when it should be in state B. But the state of
the decoder is not generally known to the transmitter; can a sequence be
found which will restore sync regardless of the incorrect state it is in?
The answer is again yes, as is shown in the table in Fig0 13- Consider
that any of the 6 incorrect state pairs are ocauppied, if an x is fed to the
decorder then only F BW or f1W can be occuppiedo If a 00 is fed to the
coder only BI can exist, and then a sequence is easily found which reduces
this to BB. One such sequence, for the example shown in Fig0 13, is 11 00
11 11 11 00; if this transmitted to the decoder it can be assured that
the very next signal will be interpreted in the proper code table0 A
similar sequence can be found for any decoder (or transducer) if a path exits
in the sum of the state diagram with itself from any out of sync state to
the desired in sync states0 To prove this imagine all out of sync states
are occuppied and feed in a signal which removes at least one of them, then
remove another etco Since out of sync states cannot be reached from in
sync states, the process must eventually clear all out of sync states.

I
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